Course Title	Bio-inspired Design	Course No	To be filled by the office
Specialization | Design (INT) | Structure (IPC) | 3 | 0 | 3
Offered for | UG/PG/DD/PhD | Status (Core / Elective) | Elective
Prerequisite | Concepts in engineering design | To take effect from | January 2019

Course Objectives
This course intended to give the student the exposure of bio-inspired design principles. Train the student in applying the bio-inspired methodologies for innovation. Introducing the student with different perspectives of bio-inspired design. Enlighten the future scope of this valuable domain.

Course Outcomes
After completion of this course, the student is able to:
1. Describe methods for creative design,
2. Identify mechanical working principles of biological phenomena - explain their construction, motion, and/or processing mechanisms - formalize the essence of these mechanisms in models - derive non-conventional design principles from these models,
3. Implement these design principles in innovative technical devices - summarize the transition process from the biological to the mechanical domain - present their design in drawings and working models.

Contents of the course
1. **Introduction** (6)
 Basic principles, building blocks, material property charts, how the study of nature’s designs can help engineers, examples of successful biomimetic designs.
 Mechanical design – hierarchical construction, bio-composites, structure & properties of bamboo, silks, bones, teeth, shells, antlers and beaks, impact resistance, fracture mitigation, damping, self-healing.

2. **The Bio Inspired Design Approach** (4)
 Finding the biological information, Dealing with friction, Innovative designing with ACRREx (Abstracting, Categorizing, Reflecting, Reformulating and Extending) method.

3. **Bio-inspired Design Methodology** (5)
 Problem solving, TRIZ, Innovation and efficiency, functions, Integration between biology design and innovation, methodology chart.

4. **Bio-Designing Perspectives**
 - **Materials and surfaces**: Muscles and artificial muscles, lotus effect, gecko adhesion, Desert beetle, pitcher plants, bio-fouling, coatings. Silver ant and heat dissipation, insulation of fur and feathers, constructal theory.
 - **Sensors**: Biological sensors, Bio-inspired sensors.
 - **Control**: Neural control, Robot controllers, Running, Robustness, Crawling - Soft robotics, Gliding & Flapping flight, Swimming.
 - **Bio-optics** – structural colors, compound eyes, antireflection, stealth, imaging
 - **Navigation** – short & long range navigation techniques of bees, ants, turtles & migratory birds.
 - **Bioconstruction**: Mechanical stiffness and motion, Hydrostatic stiffness and motion.
 - **Biopropulsion**: Macroscale walking, Macroscale flying.

Bio-inspired design task
<table>
<thead>
<tr>
<th>Textbook</th>
</tr>
</thead>
</table>
3. Lakhtakia A, Martin-Palma RJ (eds); *Engineered biomimicry*; Elsevier, 2013 |

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>